2021 REGULATION
III SEMESTER
Subjects Handles By
MA3354 - DM : Mr. L. Sivakumar, AP / H & S.
CS3351 - DPCO [ T & L ] : Mr. S. Selvam, AP / IT.
Theory Syllabus
MA3354 - Discrete Mathematics : Click HereCS3351 - Digital Principles and Computer Organization : Click Here CS3352 - Foundations of Data Science : Click Here CD3291 - Data Structures and Algorithms : Click Here CS3391 - Object Oriented Programming : Click HereSyllabus for Practical
CD3281 - Data Structures and Algorithms Laboratory : Click Here CS3381 - Object Oriented Programming Laboratory : Click Here CS3361 - Data Science Laboratory : Click Here GE3361 - Professional Development : [ NAAN MUTHALVAN ]Text Book :
Rosen. K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017.
Tremblay. J.P. and Manohar. R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011.
Grimaldi. R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5thEdition, Pearson Education Asia, Delhi, 2013.
Koshy. T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.
Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum’s Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.
- M. Morris Mano, Michael D. Ciletti, “Digital Design : With an Introduction to the Verilog HDL, VHDL, and System Verilog”, Sixth Edition, Pearson Education, 2018. Click Here.
- David A. Patterson, John L. Hennessy, “Computer Organization and Design, The Hardware/Software Interface”, Sixth Edition, Morgan Kaufmann/Elsevier, 2020. Click Here.
Reference Book :
- Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, “Computer Organization and Embedded Systems”, Sixth Edition, Tata McGraw-Hill, 2012.
- William Stallings, “Computer Organization and Architecture – Designing for Performance”, Tenth Edition, Pearson Education, 2016.
- M. Morris Mano, “Digital Logic and Computer Design”, Pearson Education, 2016.
UNIT I - INTRODUCTION
Data Science: Benefits and uses – facets of data Data Science Process: Overview – Defining research goals – Retrieving data – Data preparation Exploratory Data analysis – build the model – presenting findings and building applications - Data Mining Data Warehousing – Basic Statistical descriptions of Data.
UNIT II - DESCRIBING DATA
Types of Data - Types of Variables Describing Data with Tables and Graphs –Describing Data with Averages - Describing Variability Normal Distributions and Standard (z) Scores.
UNIT III - DESCRIBING RELATIONSHIPS
Correlation –Scatter plots –correlation coefficient for quantitative data –computational formula for correlation coefficient – Regression –regression line –least squares regression line – Standard error of estimate – interpretation of r2 –multiple regression equations –regression towards the mean.
UNIT IV - PYTHON LIBRARIES FOR DATA WRANGLING
Basics of Numpy arrays –aggregations –computations on arrays –comparisons, masks, boolean logic – fancy indexing – structured arrays – Data manipulation with Pandas – data indexing and selection – operating on data – missing data – Hierarchical indexing – combining datasets – aggregation and grouping – pivot tables.
UNIT V - DATA VISUALIZATION
Importing Matplotlib – Line plots – Scatter plots – visualizing errors – density and contour plots – Histograms – legends – colors – subplots – text and annotation – customization – three dimensional plotting - Geographic Data with Basemap Visualization with Seaborn.
Text Book :- David Cielen, Arno D. B. Meysman, and Mohamed Ali, “Introducing Data Science”, Manning Publications, 2016. (Unit I).
- 2. Robert S. Witte and John S. Witte, “Statistics”, Eleventh Edition, Wiley Publications, 2017. (Units II and III).
- Jake VanderPlas, “Python Data Science Handbook”, O’Reilly, 2016. (Units IV and V).
- Allen B. Downey, “Think Stats: Exploratory Data Analysis in Python”, Green Tea Press,2014.
1. Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, “Data Structures & Algorithms in Python”, An Indian Adaptation, John Wiley & Sons Inc., 2021.
Lee, Kent D., Hubbard, Steve, “Data Structures and Algorithms with Python” Springer Edition 2015.
Rance D. Necaise, “Data Structures and Algorithms Using Python”, John Wiley & Sons, 2011.
Aho, Hopcroft, and Ullman, “Data Structures and Algorithms”, Pearson Education, 1983.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, “Introduction to Algorithms", Second Edition, McGraw Hill, 2002.
Mark Allen Weiss, “Data Structures and Algorithm Analysis in C++”, Fourth Edition, Pearson Education, 2014.
Herbert Schildt, “Java: The Complete Reference”, 11 th Edition, McGraw Hill Education, New Delhi, 2019.
Herbert Schildt, “Introducing JavaFX 8 Programming”, 1 st Edition, McGraw Hill Education, New Delhi, 2015.
Cay S. Horstmann, “Core Java Fundamentals”, Volume 1, 11 th Edition, Prentice Hall, 2018.